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Abstract— Reach-avoid analysis combines the construction of
safety and specific progress guarantees, and is able to formalize
many important engineering problems. In this paper we study
the reach-avoid verification problem of systems modelled by or-
dinary differential equations using Lyapunov densities. Firstly,
the weak reach-avoid verification is considered. Given an initial
set, a safe set and a target set, the weak reach-avoid verification
is to verify whether the reach-avoid property (i.e., the system
will enter the target set eventually while staying inside the safe
set before the first target hitting time) holds for almost all states
in the initial set. We propose two novel sufficient conditions
using Lyapunov densities for the weak reach-avoid verification.
These two sufficient conditions are shown to be weaker than
existing ones, providing more possibilities of verifying weak
reach-avoid properties successfully. Then, we generalize these
conditions to the verification of reach-avoid properties for
all states in the initial set. Finally, an example demonstrates
theoretical developments of proposed conditions.

I. INTRODUCTION

Reach-avoid analysis combines the construction of safety
and specific progress guarantees for dynamical systems, as it
addresses guarantees for both the eventual reach of desirable
states and avoidance of unsafe states. It is employed in
diverse engineering applications such as motion planning
[4]. Reach-avoid analysis in this paper mainly attempts to
verify reach-avoid properties, i.e., verify whether a system
starting from a legally initial set will enter a desirable target
set eventually while reliably avoiding a set of unsafe states
before hitting the target set.

Various methods have been applied to certify the reach-
avoid properties of engineering systems, e.g., [12], [10],
[23]. One of well-known methods is the barrier certificate
method, which was originally proposed for safety verifi-
cation of dynamical systems in [18] and then extended to
reach-avoid verification in [20]. Recently, guidance-barrier
functions were proposed in [25] for reach-avoid verification.
These methods investigate reach-avoid properties of non-
linear dynamical systems without explicitly computing the
solutions of these systems, as done in the stability analysis
with Lyapunov functions. However, one may not be able to
find a function to certify the reach-avoid property due to the
fact that the solution trajectory for some initial state, which
is in a negligible set (i.e., a set with measure zero), may
not reach a desired set. Therefore, Lyapunov densities have
been used to verify weak reach-avoid properties of nonlinear
systems in [20]. The notion ‘weak’ is used to emphasize
that the system satisfies a property for almost all points in
the domain. Specially, Lyapunov densities evaluate how the
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measure of a set is evolving along the solutions. Thus, they
provide certifications for not all points but almost every point
in the domain.

In this paper we investigate the problem of reach-avoid
verification for systems modeled by ordinary differential
equations. The main results presented in this paper for
reach-avoid verification rely on Lyapunov densities. Firstly,
the weak reach-avoid verification is considered. Given an
initial set, a safe set and a target set, the weak reach-avoid
verification is to verify the satisfaction of the weak reach-
avoid property, which formulates that the system starting
from almost all states in the initial set will enter the target
set eventually while staying inside the safe set before the
first target hitting time. Inspired by the conditions proposed
in [25] for the strong reach-avoid verification (i.e., verify
the satisfaction of the reach-avoid property for all states in
the initial set), we propose two sufficient conditions in the
density space for verifying the weak reach-avoid property.
Then, via analyzing the divergence of the vector field of
the system, we establish the relationship between these two
conditions and the ones in [25], and further generalize these
two conditions to the strong reach-avoid verification. Finally,
we demonstrate the theoretical developments of proposed
methods on one example.

The contributions of this work are summarized below.
1) Two novel conditions in the density space are pro-

posed for the weak reach-avoid verification of systems
modelled by ordinary differential equations. These two
conditions are shown to be weaker than the one in [20],
providing more possibilities of verifying weak reach-
avoid properties successfully.

2) We generalize the conditions for the weak reach-avoid
verification to the strong one, lifting their capabilities
in reach-avoid verification.

Related Work

There are a large amount of works on reach-avoid analysis,
e.g., [22], [3], [23], [1], [9], [2], [24], [13]. Thus, we do not
intend to provide a comprehensive and thorough literature
review, but rather present some closely related works here.

Lyapunov density has been first introduced in [21] as
a tool to certify almost global stability of nonlinear sys-
tems. Almost global stability of origins means that the
solutions converge to the origin for almost every initial
state. In [5], the result on nonlinear systems obtained in
[21] has been generalized to nonlinear systems with time
dependent switching. Sufficient conditions to ensure almost
global stability of nonlinear systems with time dependent
switching have been provided with the help of common
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Lyapunov density and multiple Lyapunov densities. More-
over, Lyapunov densities were used to certify almost global
stability of nonautonomous systems [16], [14] and switched
systems with state-dependent switching [15]. Recently, they
have been extended to the verification of temporal properties
of nonlinear systems such as safety and reach-avoidance
for nonlinear systems. Some sufficient conditions has been
developed for nonlinear (disturbed) systems. Leaning upon
the results in [20], certificates for weak safety and weak
reach-avoid verification of nonlinear (switched) systems with
time dependent switching have been given based on Lya-
punov densities in [7] and [6]. Afterwards, the result in
[6] was extended to the weak reach-avoid verification of
nonlinear systems with state-dependent switching in [8]. In
this paper we proposed two new sufficient conditions based
on Lyapunov densities to the weak reach-avoid verification
of nonlinear systems. They are shown to be weaker than
the one in [20]. Furthermore, we extend them to the strong
reach-avoid verification.

II. PRELIMINARIES

We denote the space of m-times continuously differen-
tiable functions mapping X ⊆ Rn to Rp by Cm(X ,Rp).
When p = 1, we will simply write Cm(X ), and for con-
tinuous functions (m = 0), we will omit the superscript.
For a function f(·) : Rn → Rn with f = (f1, . . . , fn)

>,
Of =

∑n
i=1

∂fi
∂xi

denotes the divergence of f ; for a function
g(·) : Rn → R, Og = ( ∂g∂x1

, . . . , ∂g
∂xn

) denotes the gradient
of g; given a set X , the sets ∂X and X denote its boundary
and closure, respectively.

A. Problem Statement

In this subsection we formulate the system and its associ-
ated strong/weak reach-avoid properties of interest.

The system of interest is a system whose dynamics are
described by an ODE of the following form:

ẋ(t) = f(x(t)),x(0) = x0 ∈ Rn, (1)

where ẋ(t) = dx(t)
dt and f(x) = (f1(x), . . . , fn(x))

> with
fi(x) being locally Lipschitz continuous.

We denote the trajectory of system (1) that originates from
x0 ∈ Rn and is defined over the maximal time interval
[0, Tx0) by φx0

(·) : [0, Tx0)→ Rn. Consequently,

φx0
(t) := x(t),∀t ∈ [0, Tx0), and φx0

(0) = x0,

where Tx0 is either a positive value or ∞.
Given a bounded and open safe set X , an initial set X0

and a compact target set Xr, where

X = {x ∈ Rn | h(x) < 0} with ∂X = {x ∈ Rn | h(x) = 0},
X0 = {x ∈ Rn | l(x) < 0}, and
Xr = {x ∈ Rn | g(x) ≤ 0}

with l(x), h(x), g(x) : Rn → R, and X0,Xr ⊆ X , both
strong and weak reach-avoid properties are defined below.

Definition 1 (Strong Reach-avoid Property): Given sys-
tem (1) with the safe set X , initial set X0 and target set

Xr, we say that the strong reach-avoid property holds if for
any initial condition x0 ∈ X0, its trajectory φx0(t) satisfies

φx0(T ) ∈ Xr
∧
∀t ∈ [0, T ].φx0(t) ∈ X

for some T > 0.
Definition 2 (Weak Reach-avoid Property): Given system

(1) with the safe set X , initial set X0 and target set Xr, we
say that the weak reach-avoid property holds if for almost
all initial conditions x0 ∈ X0, its trajectory φx0(t) satisfies

φx0(T ) ∈ Xr
∧
∀t ∈ [0, T ].φx0(t) ∈ X

for some T > 0.

B. Conditions for Reach-avoid Verification

In this subsection we recall existing sufficient conditions
for assuring the satisfaction of strong and weak reach-avoid
properties.

Proposition 1 (Proposition 5, [25]): Given system (1)
with sets X0, Xr and X , if there exists a continuously
differentiable function v(x) ∈ C1(X ) such that

v(x) > 0,∀x ∈ X0

5v(x) · f(x) ≥ λv(x),∀x ∈ X \ Xr
v(x) ≤ 0,∀x ∈ ∂X

(2)

where λ > 0 is a user-defined value, then the strong reach-
avoid property in Definition 1 holds.

Proposition 2 (Proposition 4, [25]): Given system (1)
with sets X0, Xr and X , if there exist a continuously
differentiable function v(x) ∈ C1(X ) and a continuously
differentiable function w(x) ∈ C1(X ) satisfying

v(x) > 0,∀x ∈ X0

5v(x) · f(x) ≥ 0,∀x ∈ X \ Xr
v(x)−5w(x) · f(x) ≤ 0,∀x ∈ X \ Xr
v(x) ≤ 0,∀x ∈ ∂X

(3)

then the strong reach-avoid property in Definition 1 holds.
The condition for the weak reach-avoid verification is

presented in [20].
Proposition 3 (Corollary 3.8, [20]): Given system (1)

with sets X0, Xr and X , and an open set X̂ containing X0, if
there exists a density function ρ(x) ∈ C1(X ) which satisfies

ρ(x) > 0,∀x ∈ X̂ ,
ρ(x) ≤ 0,∀x ∈ ∂X ,
O(ρf)(x) > 0,∀x ∈ X \ Xr,

(4)

where O(ρf)(x) = O
(
ρ(x) · f(x)

)
= Oρ(x)f(x) +

ρ(x)Of(x), then the weak reach-avoid property in Defini-
tion 2 holds.

In [20], the constraint ρ(x) ≤ 0,∀x ∈ ∂X \ ∂Xr rather
than ρ(x) ≤ 0,∀x ∈ ∂X is used, since ∂X \ ∂Xr = ∂X in
this paper (it can be justified according to the fact that X is
open, Xr is compact and Xr ⊆ X ).



An obvious deficiency of the condition in Proposition 3 is
that it is not applicable to system (1) with

∃x0 ∈ X \ Xr.f(x0) = 0 ∧
n∑
i=1

∂fi(x0)

∂xi
= 0, (5)

which results in O(ρf)(x0) = 0 for any ρ(x) ∈ C1(X ).
However, the sufficient conditions proposed in the present
work will apply to this system. Moreover, they are more
expressive than condition (4).

III. REACH-AVOID VERIFICATION

In this section we present our sufficient conditions for ver-
ifying the weak reach-avoid property in Definition 2. These
sufficient conditions are inspired by those in Proposition 1
and 2 as well as density functions in [20]. Afterwards, we
exploit the relationship between the derived conditions and
those in Proposition 1 and 2, and formulate the situation
under which the derived conditions can also be used to
verifying the strong reach-avoid property in Definition 1.

A. Weak Reach-avoid Verification

In this subsection we present our sufficient conditions for
verifying the weak reach-avoid property in Definition 2. The
derivation of these conditions partly relies on Liouville’s
theorem [21], which is formulated in Lemma 1.

Lemma 1: Let f = (f1, . . . , fn)
> ∈ C1(D,Rn), where

D ⊆ Rn is open, and ρ ∈ C1(D) be integrable. For x0 ∈ Rn,
let φx0

(t) be the solution to system (1) with x(0) = x0. For
a measurable set Z, assume that φZ(τ) = {φx0(τ) | x0 ∈
Z} is a subset of D for all τ ∈ [0, t]. Then∫
φZ(t)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ t

0

∫
φZ(τ)

O(ρf)(x)dxdτ.

Our first sufficient condition, which is adapted from the
one in Proposition 1, for verifying the weak reach-avoid
property in Definition 2 is formulated in Theorem 1.

Theorem 1: Consider system (1) with the safe set X ,
target set Xr and initial set X0. Given a continuous function
λ(x) > 0 over X \ Xr, if there exists a density function
ρ(x) ∈ C1(X ) satisfying

ρ(x) > 0,∀x ∈ X0,

O(ρf)(x) ≥ λ(x)ρ(x),∀x ∈ X \ Xr,
ρ(x) ≤ 0,∀x ∈ ∂X ,

(6)

then the weak reach-avoid property in Definition 2 holds.
Proof: Since X is bounded, X \ Xr is compact. There-

fore, there exists δ > 0 such that

λ(x) ≥ δ, ∀x ∈ X \ Xr.

We first show that given x0 ∈ R = {x ∈ X | ρ(x) >
0}, if system (1) leaves R, it must enter Xr before leaving
R. Suppose to the contrary that the flow φx0(t) leaves R
without entering Xr first. Let T > 0 be the first time instant
that φx0

(t) leaves R. By this we mean that φx0
(t) ∈ R\Xr

for all t ∈ [0, T ) and φx0
(T ) ∈ ∂R (i.e., ρ(φx0

(T )) = 0
and ρ(φx0

(t)) > 0 for t ∈ [0, T )). Also, since

O(ρf)(x) ≥ λ(x)ρ(x),∀x ∈ X \ Xr,

we have that

O(ρf)(x) |x=φx0
(t)≥ λ(φx0

(t))ρ(φx0
(t)),∀t ∈ [0, T ].

That is,

dρ(φx0
(t))

dt
= Oρ(x) · f(x) |x=φx0

(t)

≥ (λ(φx0
(t))− Of(φx0

(t)))ρ(φx0
(t))

≥ (λ(φx0
(t))− λ0)ρ(φx0

(t))

≥ (δ − λ0)ρ(φx0
(t)),∀t ∈ [0, T ].

where λ0 = max
x∈X\Xr Of(x). Thus,

d
(
−ρ(φx0

(t))
)

dt ≤
(δ − λ0)(−ρ(φx0

(t))),∀t ∈ [0, T ]. According to the
Grönwall’s inequality, we have that ρ(φx0

(T )) ≥
eδ−λ0ρ(x0). This implies that ρ(φx0

(T )) > 0, which con-
tradicts ρ(φx0(T )) = 0. Therefore, there does not exist a
trajectory which, starting from R, will leave the set R before
entering the target set Xr.

Next, we show that the set of all initial conditions x0’s in
R whose flows φx0

(t)’s do not leave R\Xr in finite time is
a set of measure zero. For these trajectories, ρ(φx0(t)) > 0
for t ≥ 0. Now define

Z =
⋂

i=1,2,...

{x0 ∈ R | φx0(t) ∈ R \ Xr,∀t ∈ [0, i]}. (7)

The set Z is an intersection of countable open sets and hence
is measurable. It contains all initial states in R for which the
trajectories stay in R \ Xr for all t ≥ 0. That Z is a set of
measure zero can be shown using Lemma 1 as follows. We
have that∫
φZ(t)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ t

0

∫
φZ(τ)

O(ρf)(x)dxdτ

≥
∫ t

0

∫
φZ(τ)

λ(x)ρ(x)dxdτ

≥ δ
∫ t

0

∫
φZ(τ)

ρ(x)dxdτ,∀t ≥ 0.

where φZ(t) = {x | x = φx0(t),x0 ∈ Z}.
Let ψ(t) =

∫
φZ(t)

ρ(x)dx. Thus, −ψ(t) ≤ −ψ(0) +

δ
∫ t
0
(−ψ(τ))dτ,∀t ≥ 0, according to the Grönwall’s inequal-

ity (integral form), we have −ψ(t) ≤ −eδtψ(0) for t ≥ 0.
Since ρ(x) is bounded over X , the measure of Z is zero.

Since ρ(x) > 0 for x ∈ X0, X0 ⊆ R holds. Consequently,
the conclusion holds.

From the proof of Theorem 1, we observe that if there
exists a density function ρ(x) ∈ C1(X ) satisfying condition
(6), system (1) starting from an initial state x0 ∈ R will
either stay inside R \ Xr for all the time or enter the target
set Xr in finite time while staying inside the safe set R\Xr
before the first target hitting time. Moreover, the measure of
initial states in R such that system (1) starting from them
will stay inside R \ Xr for all the time is zero.

Comparing condition (6) with condition (4), we observe
that the term O(ρf)(x) in condition (6) is required to be
larger than zero only in the subset R \ Xr rather than
X \ Xr. It can be non-positive in X \ (R \ Xr). This renders



condition (6) applicable to the weak reach-avoid verification
of system (1) subject to (5). Besides, we can also conclude
that if ρ(x) ∈ C1(X ) satisfies O(ρf)(x) > 0,∀x ∈ X \ Xr,
there exists λ > 0 such that it satisfies O(ρf)(x) ≥
λρ(x),∀x ∈ X \ Xr. This conclusion can be certified in
the following way: That

O(ρf)(x) > 0,∀x ∈ X \ Xr

implies that

∃ε0 > 0.O(ρf)(x) ≥ ε0,∀x ∈ X \ Xr.

Let Mε0 ≥ ρ(x) for x ∈ X \ Xr, where M > 0. Therefore,
we have

O(ρf)(x) ≥ λρ(x),∀x ∈ X \ Xr,

where λ = 1
M . Thus, condition (6) is more expressive than

(4).
It is worth noting that λ(x) in condition (6) should be

strictly larger than zero over X \ Xr. If λ(x0) = 0 for some
x0 ∈ X \ Xr, inspired by condition (3), we will present
another condition for the weak reach-avoid verification.

Theorem 2: Consider system (1) with the safe set X ,
target set Xr and initial set X0. Given a continuous function
λ(x) ≥ 0 over X \ Xr, if there exist density functions
ρ1(x), ρ2(x) ∈ C1(X ) satisfying

ρ1(x) > 0,∀x ∈ X0,

O(ρ1f)(x) ≥ λ(x)ρ1(x),∀x ∈ X \ Xr,
ρ1(x) ≤ O(ρ2f)(x),∀x ∈ X \ Xr,
ρ1(x) ≤ 0,∀x ∈ ∂X ,

(8)

then the weak reach-avoid property in Definition 2 holds.
Proof: We first prove that the set of all initial states

x0’s in R = {x ∈ X | ρ(x) > 0} whose flows φx0
(t)’s do

not leave the open set R\Xr in finite time is a set of measure
zero. We show that the measure of the set Z in (7) is zero.
Since φZ(t) ⊆ R\Xr for t ≥ 0,R\Xr is bounded, and ρ(x)
is continuous, where φZ(t) = {x | x = φx0

(t),x0 ∈ Z},
we have that∫

φZ(t)

ρ1(x)dx−
∫
Z

ρ1(x)dx

=

∫ t

0

∫
φZ(τ)

O(ρ1f)(x)dxdτ ≥ 0,∀t ≥ 0,

according to O(ρ1f)(x) ≥ 0,∀x ∈ R \ Xr. Thus,∫
φZ(t)

ρ1(x)dx ≥
∫
Z

ρ1(x)dx,∀t ≥ 0. (9)

Further, since ρ1(x) ≤ O(ρ2f)(x),∀x ∈ X \ Xr, we have
that∫ t

0

∫
φZ(τ)

ρ1(x)dx ≤
∫ t

0

∫
φZ(τ)

O(ρ2f)(x)dxdτ,∀t ≥ 0.

Combining (9), we have that∫
Z

ρ1(x)dx ≤

∫
φZ(t)

ρ2(x)dx−
∫
Z
ρ2(x)dx

t
,∀t ≥ 0

and consequently,∫
Z

ρ1(x)dx ≤ 0 = lim
t→∞

∫
φZ(t)

ρ2(x)dx−
∫
Z
ρ2(x)dx

t
.

Since ρ1(x) > 0 over Z, we have the conclusion that Z is a
set of measure zero. Therefore, the set of all initial conditions
in R whose flows stay in R\Xr for all the time is a set of
measure zero.

Now take any x0 ∈ R whose flow leaves R\Xr in finite
time. We will show that such a flow must enter Xr before
leaving R. Suppose to the contrary that the flow φx0

(t)
leaves R without entering Xr first. Let T > 0 be the first
time instant that φx0(T ) ∈ ∂R, i.e., ρ1(φx0(T )) = 0.

Since O(ρ1f)(x) ≥ 0,∀x ∈ R \ Xr and ρ1(φx0(t)) ≥ 0
for t ∈ [0, T ], we have that

dρ1(φx0
(t))

dt
= Oρ1(x) · f(x) |x=φx0 (t)

≥ −ρ1(x)Of(x) |x=φx0 (t)

≥ −λ0ρ1(φx0
(t)),∀t ∈ [0, T ],

(10)

where λ0 = max
x∈X\Xr Of(x). Consequently, we have that

ρ1(φx0(T )) > 0,

contradicting ρ1(φx0
(T )) = 0. Thus, we conclude that there

must exist t ≥ 0 such that φx0
(t) ∈ Xr and φx0

(τ) ∈ R
for all τ ∈ [0, t].

Since ρ1(x) > 0 for x ∈ X0, X0 ⊆ R holds. Conse-
quently, the conclusion holds.

Comparing conditions (6) and (8), one difference lies in
that condition (8) allows λ(x) to be equal to zero over some
x ∈ X \ Xr. Since the ‘equal’ sign is taken into account,
constraint

O(ρ1f)(x) ≥ λ(x)ρ1(x),∀x ∈ X \ Xr
can only ensure that all trajectories starting from R cannot
leave the set R if they do not reach the target set Xr. This
conclusion can be derived from (10). In order to ensure the
reach of the target set Xr, a new constraint, i.e.,

ρ1(x) ≤ O(ρ2f)(x),∀x ∈ X \ Xr,

is introduced. This constraint ensures that the set of initial
states in R such that system (1) stays inside R\Xr for all the
time is a set of measure zero. That is, it ensures that system
(1) starting from almost all initial states in R will reach the
target set Xr eventually while staying inside R before the
first target hitting time. If λ(x) > 0 over X \ Xr, constraint
ρ1(x) ≤ O(ρ2f)(x),∀x ∈ X \ Xr in condition (8) can be
removed and thus condition (8) will equal condition (6).

Also, we can show that if there exists ρ(x) ∈ C1(X )
satisfying

O(ρf)(x) > 0,∀x ∈ X \ Xr,

there exist ρ1(x), ρ2(x) ∈ C1(X ) such that

O(ρ1f)(x) ≥ λ(x)ρ1(x),∀x ∈ X \ Xr
and

ρ1(x) ≤ O(ρ2f)(x),∀x ∈ X \ Xr



hold, where λ(x) ≡ 0 for x ∈ X . This conclusion can be
certified in the following way: That

O(ρf)(x) > 0,∀x ∈ X \ Xr

implies that

∃ε0 > 0.O(ρf)(x) ≥ ε0,∀x ∈ X \ Xr.

Let Mε0 ≥ ρ(x) for x ∈ X \ Xr, where M > 0. Therefore,
we can take

ρ1(x) := ρ(x), λ(x) := 0, ρ2(x) :=Mρ(x)

over X \ Xr, which satisfy

O(ρ1f)(x) ≥ 0,∀x ∈ X \ Xr

and ρ1(x) ≤ Mε0 ≤ O(ρ2f)(x),∀x ∈ X \ Xr. Therefore,
condition (8) is also more expressive than (4).

Remark 1: If λ(x) is allowed to take negative values over
X \ Xr in Theorem 2, then for ensuring satisfaction of the
weak reach-avoid property in Definition 2, the constraint
ρ1(x) ≤ O(ρ2f)(x),∀x ∈ X \ Xr in condition (4) should
be ρ1(x) < O(ρ2f)(x),∀x ∈ X \ Xr, and the others remain
the same. Due to space limitations we omit the proof here.

B. Generalization to Strong Reach-avoid Verification

In this subsection we exploit the differences between
conditions (2)/(3) and (6)/(8), and explore the situations,
under which the sufficient conditions in Theorem 1 and 2
can also be used to verify the strong reach-avoid property in
the sense of Definition 1.

The main difference between conditions (2)/(3) and (6)/(8)
lies in that condition (2)/(3) uses O(ρf)(x) rather than
Oρ(x)·f(x). Comparing to Oρ(x)·f(x), the term O(ρf)(x)
has an additional term ρ(x)Of(x). Therefore, when

Of(x) ≡ 0,∀x ∈ X \ Xr, (11)

we have that conditions (6) and (8) are respectively a special
form of ones (2) and (3). In this case, if condition (6) or
(8) holds, we can also conclude that the strong reach-avoid
property in the sense of Definition 1 holds. We do not give
the proofs here since this conclusion is just a special case of
Corollary 1 and 2 shown below. However, condition (11) may
be quite restrictive in practice, limiting the use of conditions
(6) and (8) in verifying the strong reach-avoid property. In
order to overcome this issue, we in the following formulate
two less conservative constraints such that the satisfaction of
condition (6) or (8) also implies the satisfaction of the strong
reach-avoid property. They are respectively formulated in
Corollary 1 and 2.

Corollary 1: If there exist a density function ρ(x) ∈
C1(X ) and a continuous function

λ(x) > Of(x),∀x ∈ X \ Xr, (12)

which satisfy (6), then the strong reach-avoid property holds.
Proof: We firstly show that there does not exist an

initial state x0 ∈ X0 such that

φx0(t) ∈ R \ Xr,∀t ∈ [0,∞),

where R = {x ∈ X | ρ(x) > 0}.
Assume that φx0

(t) ∈ R \ Xr,∀t ∈ [0,∞) holds.
From constraints λ(x)ρ(x) ≤ O(ρf)(x),∀x ∈ R \ Xr and
λ(x) > Of(x),∀x ∈ X , we have that for t ≥ 0,

Oρ(x) · f(x) |x=φx0 (t)
≥

(λ(x)− Of(x))ρ(x) |x=φx0 (t)
.

(13)

Further, since X \ Xr is compact, there exists ε0 > 0 such
that λ(x) − Of(x) ≥ ε0,∀x ∈ X \ Xr. Thus, we have
ρ(φx0(t)) ≥ eε0tρ(x0),∀t ∈ [0,∞), which contradicts that
ρ(x) is bounded over X . Therefore, these exists τ ′ ≥ 0 such
that φx0

(τ ′) /∈ R \ Xr.
Besides, constraint (13) implies that

ρ(φx0
(t)) ≥ eε0tρ(x0) > 0,∀t ∈ [0, T ],

where T = max{t | ∀τ ∈ [0, t].φx0(τ) ∈ R \ Xr}. Since
ρ(x) = 0 for x ∈ ∂R, we have that φx0

(T ) ∈ Xr. Since
R ⊆ X , we have that the strong reach-avoid property in the
sense of Definition 1 holds.

Corollary 1 indicates that when λ(x) > Of(x) over
X \ Xr, condition (6) can also be used for the strong reach-
avoid verification and behaves like condition (2). However,
it is observed that condition (6) is more expressive than
condition (2), since condition (2) is just a special instance
of condition (6) with λ(x) = Of(x) + λ. Furthermore, it
is interesting to find that when max

x∈X\Xr Of(x) < 0, the
continuous function λ(x) in condition (6) can be further
relaxed and is not necessary to be positive over X \ Xr for
both the weak and strong reach-avoid verification. In case
that max

x∈X\Xr Of(x) > 0, a continuous function λ(x)
satisfying

∀x ∈ X \ Xr.λ(x) > 0 ∧ ∃x ∈ X \ Xr.λ(x) ≤ Of(x)

will render condition (6) only applicable to the weak reach-
avoid verification of system (1).

Corollary 2: If there exist density functions
ρ1(x), ρ2(x) ∈ C1(X ) and λ(x) ∈ C(X ) satisfying
condition (8), then the strong reach-avoid property in the
sense of Definition 1 holds when

ρ2(x)Of(x) ≤ 0 and λ(x) ≥ Of(x)

for x ∈ X \ Xr.
Proof: From constraints

ρ1(x) ≤ O(ρ2f)(x),∀x ∈ R \ Xr

and Of(x)ρ2(x) ≤ 0,∀x ∈ R \ Xr, where R = {x ∈ X |
ρ(x) > 0}, we have that

Oρ2(x) · f(x) ≥ ρ1(x),∀x ∈ R \ Xr.

Further, since λ(x) ≥ Of(x) over X \ Xr, we have that
Oρ1(x) · f(x) ≥ 0 over R \ Xr. Following the proof of
Proposition 5 in [25], we have the conclusion.

If λ(x) > Of(x) over X \ Xr, the constraint
ρ2(x)Of(x) ≤ 0,∀x ∈ X \ Xr in Corollary 2 is redundant
since the constraint ρ1(x) ≤ O(ρ2f)(x),∀x ∈ X \ Xr in
condition (8) can be removed, according to Corollary 1.



It is worth noting here that if λ(x) ∈ C(X ) in condition
(6) (or, (8)) does not satisfy the aforementioned conditions,
and it is just a continuous function over C(X ), the condition
(6) (or, (8)) can deal with the case that the safety and
performance objectives are in conflict, but the safety is
prioritized. In this case system (1) starting from R = {x ∈
X | ρ(x) > 0} (or, R = {x ∈ X | ρ1(x) > 0}) will stay
inside the set R \ Xr, which is a subset of the safe set X ,
if it cannot reach the target set Xr. However, a qualitative
characterization of initial states in R such that system (1)
enters Xr cannot be given.

IV. EXAMPLES

In this section we demonstrate our theoretical develop-
ments on one example. The condition used for computations
are relaxed into semi-definite constraints based on the sum-
of-squares decomposition for multivariate polynomials. The
formulated semi-definite programs are presented in Ap-
pendix. The sum-of-squares module of YALMIP [11] was
used to transform the sum-of-squares optimization problem
into a semi-definite program and the solver Mosek [17] was
used to solve the resulting semi-definite program.

Example 1: Consider an academic example from [25],{
ẋ = −0.5x− 0.5y + 0.5xy

ẏ = −0.5y + 0.5
(14)

with X = {(x, y)> | x2 + y2 − 1 < 0}, Xr = {(x, y)> |
(x + 0.2)2 + (y − 0.7)2 − 0.02 ≤ 0} and X0 = {(x, y)> |
(x− 0.3)2 + (y + 0.6)2 − 0.01 < 0}.

In this experiment we take λ(x) ≡ Constant over X in
conditions (6) and (8).

Due to the presence of multiple unknown polynomials in
solving semi-definite programs (15), (16), (17), (18) and (19),
we use the following procedure for automatically assigning
parametric templates to these polynomials. Given degree d,
the used polynomial templates are ones including all mono-
mials of degree less than or equal to d. In the following pro-
cedure, dρ and ds respectively denote the degree of the poly-
nomials {ρ1(x), ρ2(x), ρ(x), v(x), w(x)} and {si(x), i =
0, 1, 2, 3, 4, p(x)}. The degrees of polynomials used for ver-
ifying strong/weak properties successfully via solving these
SDPs are presented in Table I. Some of computed R’s are
visualized in Fig. 1. Since max

x∈X\Xr Of(x) ≤ −0.50,
λ < 0 is also allowed in conditions (6) and (8) for performing
verification, and that condition (6) or (8) holds also implies
the satisfaction of the strong reach-avoid property according
to Corollary 1 and 2.

Besides, it is interesting to find from Table I that condi-
tions (6) and (8) are also able to facilitate the weak/strong
reach-avoid verification efficiently for some cases.

V. CONCLUSION

In this paper we investigated the reach-avoid verification
of continuous-time systems modeled by ordinary differential
equations using Lyapunov densities. Two new sufficient con-
ditions were proposed for the weak reach-avoid verification,
which are shown to be weaker than existing ones. Then, via

for dρ = 6 : 1 : 12 do
for ds = 2ddρ2 e : 2 : 2dρ do

solve (15) \ (16) \ (17) \ (18) \ (19)
if Solved Successfully then

return dρ, ds and ρ(x)
end if

end for
end for

SDP λ dρ ds

(15) 0.001 6 12

(15) -0.499 6 6

(16) 0 6 6

(17) - 6 12

(18) - 10 10

(19) 0.001 10 10

TABLE I
PARAMETERS OF SOLVING SDP (15)-(19) TO VERIFY THE

STRONG/WEAK REACH-AVOID PROPERTIES SUCCESSFULLY (’-’ MEANS

THAT λ IS NOT USED).

analyzing the divergence of the vector field and constrain-
ing it, we generalized the proposed two conditions to the
strong reach-avoid verification. Finally, we demonstrated our
theoretical developments on one example. The experimental
results also showed that the proposed conditions can facilitate
the weak/strong reach-avoid verification efficiently.

An appealing point of Lyapunov densities lies in facilitat-
ing the control design using convex optimization, especially
for control-affine dynamics [19]. In the future we would
investigate the reach-avoid controller synthesis based on the
proposed conditions in the present work.
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APPENDIX

The semi-definite program for solving constraint (6):
O(ρf)(x)− λ(x)ρ(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

ρ(x)− ε0 + s2(x)l(x) ∈
∑

[x],

−ρ(x) + p(x)h(x) ∈
∑

[x],
(15)

where ε0 = 10−6, ρ(x), p(x),ψi(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 2.

The semi-definite program for solving constraint (8):
O(ρ1f)(x)− λ(x)ρ1(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

O(ρ2f)(x)− ρ1(x) + s2(x)h(x)− s3(x)g(x) ∈
∑

[x],

ρ1(x)− ε0 + s4(x)l(x) ∈
∑

[x],

−ρ1(x) + p(x)h(x) ∈
∑

[x],
(16)

where ε0 = 10−6, ρ(x), p(x),ψi(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 4.

The semi-definite program for solving constraint (4)
O(ρf)(x)− ε′0 + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

ρ(x)− ε0 + s2(x)l(x) ∈
∑

[x],

−ρ(x) + p(x)h(x) ∈
∑

[x],
(17)

where ε0 = 10−6, ρ(x), p(x),ψi(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 2.

The semi-definite program for solving constraint (3):
5v(x) · f(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

5w(x) · f(x)− v(x) + s2(x)h(x)− s3(x)g(x) ∈
∑

[x],

v(x)− ε0 + s4(x)l(x) ∈
∑

[x],

−v(x) + p(x)h(x) ∈
∑

[x],
(18)

where ε0 = 10−6, v(x), w(x), p(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 4.

The semi-definite program for solving constraint (2):
5v(x) · f(x)− λv(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

v(x)− ε0 + s2(x)l(x) ∈
∑

[x],

−v(x) + p(x)h(x) ∈
∑

[x],
(19)

where ε0 = 10−6, v(x), p(x) ∈ R[x], and sj(x) ∈
∑

[x],
i = 0, . . . , 2.
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